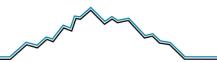
NI 43-101 TECHNICAL REPORT

Clayton Valley Lithium Project Esmeralda County, Nevada, USA

Report Prepared By:

Steven L McMillin, AIPG #11301



Prepared for:

March 4, 2024

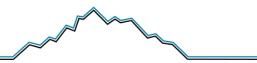
Grid Battery Metals inc., 3028 Quadra Court Coquitlam, British Columbia CANADA, V3B 5X6

Contents

1. SU	MMARY 4
2. Inti 2.1	roduction
	Location and Ownership
2.2	Mining History
2.3	Exploration
2.4	Geology, Mineralization and Alteration5
2.5	Sample Preparation, Analysis, and Security6
2.6	Drilling6
2.7	Verification7
2.8	Mineral Processing, Mining and Recovery Methods7
2.9	Mineral Resource and Reserve Estimates7
2.10	Conclusions and Recommendations8
3. INT	RODUCTION
3.1	Purpose of the Report9
3.2	Sources of information9
3.3	Qualified Person9
3.4	Site visit and Involvement of Qualified Person(s)9
3.5	Units of Measure, Acronyms and Abbreviations10
4. REI	IANCE ON OTHER EXPERTS
	OPERTY DESCRIPTION AND LOCATION
5.1	Property Location
5.2	Claims11
5.3	Property Payments, Obligations, and Agreements12
5.4	Operational Permits and Licenses12
5.5	Cultural and Environmental Liabilities15
5.6	Water Rights15
5.7	Mineral Tenure
	CESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, AND PHYSIOGRAPHY 15
6.1	Access to Property15
6.2	Climate
6.2	Physiography16
6.3	Local Resources and Infrastructure16
7. HIS	TORY

NI 43101 Technical Report Clayton Valley Lithium Project, Esmeralda Co., NV

7.2	1	Region	al Mining History References	7
7.2	2	Proper	rty History17	7
8.	GEC	LOGIC	SETTING AND MINERALIZATION	3
8.2	1	Region	nal Geologic Setting18	3
8.2	2	Proper	rty Geology22	1
	8.2.1	L St	tratigraphy and Lithologic Descriptions22	1
	8.2.2	2 St	tructural Geology22	1
	8.2.3	3 Al	Iteration23	3
8.3	3	Minera	alization23	3
	8.3.1		ocation of Mineralization	
			YPE	
J. 10.			ATION	
10			e Exploration25	
10	.2	Geoph	ysical Exploration25	5
11.	D	RILLING	G	1
12.	SA	AMPLE	PREPARATION, ANALYSES, AND SECURITY	1
13.	D	ATA VE	RIFICATION	1
14.	Ν	INERA	L PROCESSING AND METALLURGICAL TESTING	1
15.	Ν	INERA	L RESOURCE AND RESERVE ESTIMATES	5
16.	Ν	INING	AND RECOVERY METHODS	5
17.	PI	ROJECT	INFRASTRUCTURE	5
18.	Ν	ARKET	- STUDIES	5
19.	W	/ater Ri	ights	5
20.	EI	VIRON	NMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACTS	5
21.	C	APITAL	AND OPERATING COSTS	5
22.	E	CONON	AIC ANALYSIS	5
23.	A	DJACEN	NT PROPERTIES	5
24.	0	THER R	RELEVANT DATA AND INFORMATION	5
25.	C	ONCLU	SIONS AND RECOMMENDATIONS	5
26.	RI	EFEREN	VCES)
CERT	ΓIFIC	ATES C	0F AUTHOR	2
APPI	END	IX A		5
APPI	END	IX B	B1-B5	5


 \nearrow

List of Figures

Figure 1. Clayton Valley Lithium Project location	13
Figure 2. Clayton Valley Lithium Project claims	14
Figure 3. Tectonic overview of the Walker Lane	21
Figure 4. Summary of faults in the Clayton Valley region	22
Figure 5. Simplifed geology of the Project area	24
Figure 6. Idealized cross section of Clayton Valley	26
Figure 7. 2007 geothermal survey gravity stations	29
Figure 8. Project residual gravity contours with faults	30
Figure 9. Project horizontal gradient gravity contours with faults	31
Figure 10. Project total field magnetics, reduced to pole contours with faults	32
Figure 11. 2021 Project drill holes	34
Figure 12. 2007 Geothermal-gradient drill hole locations	35
Figure 13. Project area and adjacent claimants	39
Figure 14. Project Exploration Model	

List of Tables

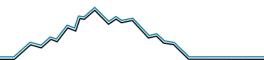
Table 1. 2021 Drill Results	33
<i>Table 2_Lithology from a geothermal well drilled in the project area</i>	33
Table 3Proposed budget for the 2024 Clayton Valley Lithium Project	38

1. SUMMARY

This technical report has been prepared by Steven McMillin for the Clayton Valley Lithium Project (Project) located in the state of Nevada, at the request of Grid Battery Metals ("Grid"), a Canadian company based in Coquitlam, British Columbia that is trading on the Over-the-Counter exchange (OTC:EVKRF),the TSX Venture Exchange Inc. (TSX.V:CELL) and the Frankfurt Stock Exchange (FWB: NMK2). This report has been prepared in accordance with the disclosure and reporting requirements set forth in the Canadian Securities Administrators' National Instrument 43-101 ("NI 43-101"), Companion Policy 43- 101CP, and Form 43-101F1.

The effective date of this report is March 4, 2024.

2. Introduction


The placer claims are located above an inferred graben bounded by the Silver Peak range front on the west and an outlier of Paleozoic rocks known as Goat Island on the east. The exploration concept is the graben is a sub-basin of the larger Clayton Valley basin and may contain lithium bearing clays or represent a secondary trap for lithium brines within the greater system.

Seven basic characteristics for the development of a lithium brine deposit are outlined by Bradley (et al., 2013) and all are present in Clayton Valley. These criteria are discussed in Section 8 below.

2.1 Location and Ownership

The Project is in Clayton Valley, Nevada between Mineral Ridge to the southwest and the Weepah Hills to the northeast, approximately 5 km (3 mi) north of the Silver Peak, Nevada, and approximately 48 km (29 miles) southwest of Tonopah, Nevada (Figure 1). The Project is in Esmeralda County and found on the Silver Peak 7.5 Minute Topographic Series maps. The center of the Project is approximately UTM 443,291.555 E, 4,183,846.612 N, projection NAD 83 UTM Zone 11 N. The Project covers 40.6 acres of land owned by the Bureau of Land Management. A small portion of the Project on the west side contains .02 acres on private land.

Grid holds a contiguous block of 70 placer claims, each covering about 8 ha (20 acres) and 41 lode claims each covering about 8.36 Ha (20.6 acres). Claims were originally staked by Nevada Energy Metals USA Inc., a subsidiary of Nickel Rock Resources at the time of staking. Nickel Rock Resources (name changed to Grid Battery Metals in 2023), and all claims are currently held by Grid.

2.2 Mining History

Clayton Valley holds the only producing lithium brine system in the United States, which has been in production since the late 1960s. Numerous exploration efforts have occurred in Clayton valley since this deposit was first discovered, although no additional extraction operations have occurred.

Lithium concentrations in the producing brine wells of Clayton Valley were initially in the 400ppm range and have declined to about 160 ppm in 2001. In the 2009 – 2013 period. Selected individual wells indicate a range of 82 to 310 ppm (Spanjers, 2015). The lithium quantity produced from 1967 to 1991 is estimated at 25,600 metric tons (Price, 2000).

2.3 Exploration

In 2021, three exploration reverse circulation exploration drillholes were drilled at the Project by Nickel Rock Resources. Hole depths ranged from 79 m (260 ft) to 137 m (450 ft). Chips were assayed by Paragon Geochemical in Reno, Nevada. Five water samples were also collected from two of the drillholes and analyzed at ALS Global in Reno, Nevada Lithium concentrations from the five water samples ranged from 20 ppm to 41 ppm.

2.4 Geology, Mineralization and Alteration

Clayton Valley is in a structurally complex tectonic zone formed by interaction of the NNW trending strike-slip movement of the Pacific Plate and ENE – WSW extension of the Great Basin. This zone is still geologically very active with numerous earthquakes and recent volcanic activity. The interplay of the two structural regimes results in a trans-tensional environment characterized by currently subsiding rhombic shaped basins and steep ranges.

The ranges around Clayton Valley are composed of metamorphosed early Paleozoic to late Precambrian sediments on the west with middle Paleozoic sediments on the east. Local granitic intrusions are common in both ranges. Miocene rocks erupted from two centers that include Silver Peak (4.8-6 Ma) and Montezuma Peak (17 Ma). Quaternary basalt plugs and sills occur at the north end of Clayton Valley (Davis et al. 1986). Geologically recent air fall tuff from the Long Valley Caldera event (7.4Ka) and minor eruptions from the Mono – Indio crater chain (latest event was about 650 years ago) form ash beds barely exposed on the surface but better preserved in the basin.

Long Valley and other ash horizons are enriched in lithium and readily release at least part of it during devitrification and hydration reactions with meteoric water. Deep circulating geothermal

water may also leach lithium from deeper sources in addition to surface sources. The lithium released to the water is then concentrated by evaporation within the playa forming a brine deposit that may be economic to extract and process (Munk et al., 2015, Price et al., 2000).

Recently a new focus on lithium bearing clay deposits has spurred exploration for this type of target in Clayton Valley (Albemarle press release, Cypress and Noram 43-101. Lithium-rich clay members are found in the Esmeralda Formation tuffaceous sediments (10-13 Ma) old (Davis et al., 1986, Diamond, et al. 2002). The source of the lithium in the clays is thought to be hydrothermal alteration and enrichment of felsic volcanic ash beds.

2.5 Sample Preparation, Analysis, and Security

Chip samples from the 2021 drill program were collected from the drill sites and stored at the "field office" tent camp. On completion of the drilling samples were collected by the project geologist. Samples were prepared and analyzed by Paragon Geochemical of Sparks, Nevada. Samples were dried and initially crushed to 70% passing a 10 mesh (2 mm) screen, a 250-gram aliquot was taken and pulverized in a ring mill to 85% passing a 200 mesh (.074) screen. Samples were analyzed with an aqua regia leach of a 0.5 g aliquot followed by Inductively Coupled Plasma Mass Spectrometry (ICP- MS). The detection level for lithium is 0.5 ppm using this method.

Envelopes of standard material obtained from Minerals Exploration Geochemistry were inserted into the sample stream at roughly 30.5-meter (100 foot) intervals. The eight standard samples returned lithium values ranging from 482 to 599 ppm Li with an average of 557 ppm Li.2

Water samples were collected by the project geologist and delivered to the ALS Global sample preparation lab in Elko, Nevada on April 5. Samples were filtered and analyzed by a combination of ICP-MS and ICP-OES methods by ALS Global. Standards were not inserted into the sample stream. A sample of drill make-up water taken from the Silver Peak municipal well was used as a background sample; it ran 70 micro grams per liter (70 ppb).

2.6 Drilling

Nickel Rock Resources drilled three holes totaling 356 m (1,155 ft) in March 2021. Two holes were drilled in the Clayton playa (RSV-01, RSV-02) testing for brine mineralization, and a third hole RSV-03 was drilled in the lode claims to the northwest. This hole was intended to test for clay-hosted lithium but ended upon encountering dolomite at 56 m (425 feet).

Nickel Rock Resources drilled three holes totaling 356 m (1,155 ft) in March 2021. Two holes were drilled in the Clayton playa (RSV-01, RSV-02) testing for brine mineralization, and a third hole RSV-03 was drilled in the lode claims to the northwest. This hole was intended to test for clay-hosted lithium but ended upon encountering dolomite at 56 m (425 feet). The samples in RSV-03 were not assayed. Hole RSV01 contained 309 ppm from 0-20 feet, and RS-02 contained multiple intercepts that range from 172-256 ppm from 0-160 feet (0-48.8 m).

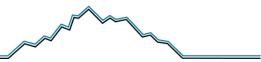
Prior to 2021, drilling was conducted in 2007 and in 1966. The 2007 drilling was conducted as part of a regional geothermal exploration program, and ten holes were completed. Six of these holes occur within the property boundary. The holes were drilled to obtain temperature gradient profiles, and depths range from approximately 450-600 feet. Geologic and temperature data are available, but there are no records of assayed cuttings.

2.7 Verification

This report relies on published data and reports that are authored by reputable sources such as academic journals, federal and state agencies, and a published 43-101 report. The information contained within these sources was considered accurate and presumed to have been verified by the authors, and attribution was given when citing information from these sources.

All exploration data presented within the Project was collected directly by Rangefront staff or sub-subcontractors and was reviewed for accuracy and consistency.

Excepting the information developed by Nickel Rock Resources, no propriety data have been identified or reviewed on this project area. All data used in preparation of this report are derived from public domain sources. These reports are authored by reputable individuals or organizations and are assumed to be factually accurate.

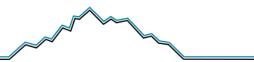

Information gleaned from previous 43-101 reports from adjacent properties is presumed to have been verified by the authors of those papers so will be used with attributions.

2.8 Mineral Processing, Mining and Recovery Methods

No mineral processing or metallurgical testing has been done for the Project or on materials from the Project. Mining and recovery methods have not been considered. This section is not applicable to this report.

2.9 Mineral Resource and Reserve Estimates

No Resources or Reserves have been estimated for the Project. This section is not applicable to this report.


2.10 Conclusions and Recommendations

Previous drilling results indicate that the previous 2021 drilling inadequately tested the clay target and produced enough encouraging results to pursue further exploration on the brine target.

It is recommended take a phased approach be taken for continued exploration. Phase 1 will be in two parts that will consist of surface geochemistry and geophysics. Phase 1A is an auger sampling program using the approximate location of the 2007 gravity station locations. This will provide a first-pass view of surface lithium distribution. Approximately 160 samples will be collected, and the estimated program cost is \$17,718.00.

For Phase 1B will consist of CSAMT geophysics on twelve 50 m spaced lines. It is anticipated that a total of 20 line-km will be covered in the survey. This program will highlight the structures in the Goat Island Graben and zones of high conductivity that may contain lithium brine. The estimated cost is \$70,950.

Phase 2 will be a drill program. Target locations will be based on the geochemical sample CSAMT results. A drill program of 3-4 holes is recommended in 2024. The estimated total cost of the 2024 program is \$575,000.

3. INTRODUCTION

This technical report has been prepared by Steven L. McMillin, a geologist employed with Rangefront Mining Services ("Rangefront") based out of Elko, Nevada. This report has prepared for the for the Clayton Valley Lithium Project (Project) located in Esmerelda County, Nevada at the request of Grid Battery Metals ("Grid"), a Canadian company based in Coquitlam, British Columbia that is trading on the Over-the-Counter exchange (OTC:EVKRF) and the Toronto Stock Exchange (TSX.V:CELL). This report has been prepared in accordance with the disclosure and reporting requirements set forth in the Canadian Securities Administrators' National Instrument 43-101 ("NI 43-101"), Companion Policy 43- 101CP, and Form 43-101F1.

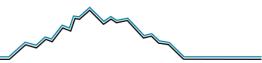
This report does not address economic analysis of the deposit, mineral extraction, recovery or processing, resources or reserves and should not be relied upon for making developmental decisions related to the Project.

The effective date of this report is March 6, 2024

3.1 Purpose of the Report

The purpose of this report is to disclose and evaluate all the exploration data that has been conducted at the Project, to comment on the integrity of the data collected, discuss the results of that exploration, and provide recommendations for continued exploration efforts at the Project. This report follows guidelines set forth in NI 43-101 and is to be submitted as a technical report to stock exchanges and security commissions for disclosure purposes.

3.2 Sources of information


This report relies on information from publicly available data sources, reports, and geologic maps, published NI 43-101 reports, and data collected directly by Rangefront or its subcontracts on site. All data presented in the Project area has been reviewed by the author and is found to be reliable.

3.3 Qualified Person

Stephen McMillin is the qualified person for this report and is employed as a geologist by Rangefront Mining Services. Grid Battery Metals Inc. contracted Rangefront to produce this report.

3.4 Site visit and Involvement of Qualified Person(s)

The author visited the Project on February 1, 2024, to investigate the local geology of the site. The author has been in contact with the geologist who oversaw the drilling program in 2021 and has discussed the methods and results with him.

3.5 Units of Measure, Acronyms and Abbreviations

This report uses the metric system for units of measure with standard US measurements provided in parenthesis, where possible. When converting between metric and standard US measurements, rounding was done to the nearest appropriate significant digit.

BLM °C cm CSAMT DEM	United States Department of the Interior, Bureau of Land Management Degrees Celsius Centimeter (0.01 meters) controlled-source audio-frequency magneto-telluric geophysical surveying digital elevation models created from terrain elevation data
°F	Degrees Fahrenheit
Ft	foot = 0.3048 meters
GIS	geographic information system
GPS	global positioning system, a satellite-based navigation system
ha	hectare = 2.471 acres
Hz	Hertz
ICP	Inductively Coupled Plasma
in	inch = 0.0254 meters
Ка	Thousands of years before present
kg	kilogram = 2.205 pounds (1,000 grams)
kHz	kilohertz (1,000 Hertz)
km	kilometer = 0.6214 miles (1,000 meters)
m	meter = 3.2808 feet
Ma	Millions of years before present
mi	mile = 1.6093 kilometers
NI 43-101	National Instrument 43-101
NAD 83	North American Datum of 1983
NV	Nevada
ppb	Parts per billion
ppm	parts per Ma (1 ppm = 1 g/t)
QA/QC	Quality Assurance / Quality Control.
U.S.	United States
USGS	United States Geologic Survey
UTM	Universal Transverse Mercator
3D	three-dimensional
Currency	All references to dollars (\$) in this report refer to the United States USD.

4. RELIANCE ON OTHER EXPERTS

The author is responsible for the entire content of this report and has not relied on other experts in its preparation. This report is based on published reports and unpublished geologic data collected directly by Alan Morris on behalf of Nickel Rock Resources. All references to published reports and information are cited in the text and included in the References of this report.

The author has not drawn on any report or opinions regarding geology, land status, environmental status, exploration results or other factors during the preparation of this report except those referenced herein.

5. PROPERTY DESCRIPTION AND LOCATION

5.1 Property Location

The Project is in Clayton Valley, Nevada between Mineral Ridge to the southwest and the Weepah Hills to the northeast, approximately 5 km (3 mi) north of the Silver Peak, Nevada, and approximately 48 km (29 miles) southwest of Tonopah, Nevada, as shown in Figure 1. The Project is in Esmeralda County and found on the Silver Peak 7.5 Minute Topographic Series maps. The center of the Project is approximately UTM 443,291.555 E, 4,183,846.612 N, projection NAD 83 UTM Zone 11 N. The Project size is 40.66 acres on land owned by the Bureau of Land Management. A small portion of the Project on the northwest side incorporates 0.2 acres of private land.

5.2 Claims

Grid holds a contiguous block of 69 placer claims, each covering about 8 ha (20 acres) and 41 lode claims each covering about 8.36 Ha (20.66 acres), as shown in Figure 2. Claims were originally staked by Nevada Energy Metals USA Inc., a subsidiary of Nickel Rock Resources at the time of staking. Nickel Rock Resources underwent a name change to Grid Battery Metals in 2023

Lode claims provide mineral extraction rights on minerals that occur in veins, lodes or other rocks in-place bearing valuable minerals and may be broad zones of mineralized rock. Placer claims provide mineral extraction rights for unconsolidated materials such as soils, sediments, bedded deposits and alluvium.

Certificates of Location are on file at the Esmeralda County Recorder's Office in Goldfield, Nevada. Claim maps are on file with the US Department of the Interior, Bureau of Land Management (BLM)

Nevada State Office (NSO) in Reno, Nevada. On January 3rd, 2024, the recording of the claims was verified with claim plat maps on file at the Esmeralda Recorder's Office in Goldfield, Nevada and the claim status was confirmed with the BLM. A list of all lode and placer claims is provided in Appendix 1.

5.3 Property Payments, Obligations, and Agreements

Grid holds all claims in the Project under its predecessor, Nevada Energy Metals USA Inc. Grid is responsible for paying annual claim maintenance fees to the BLM on each of the 110 claims at a cost of \$165 per claim (30 USC 28f; 43 CFR 3833.1-5). The claims filings are up to date as of the effective date of this report, and the claim fees were last paid to the BLM on August 2, 2023. Esmeralda County, NV has a \$12.00 claim fee and a \$12.00 processing fee. Including all fees and other costs, the annual rental costs for holding the 110 claims in the Project claim block is approximately \$19,659 due to the BLM with fees due to the State of Nevada, and Esmeralda County.

Grid holds all 110 of the claims on the Project area claims outright with no other ownership, lease, or royalty agreements. No encumbrances or obligations to other parties are known to exist on the claims block.

5.4 Operational Permits and Licenses

The Project is located on federal land managed by the BLM which requires permits for significant disturbance related to exploration activities. Minor disturbance, or casual use, does not require a permit. These activities can include surface soil and rock sampling, mapping, geophysical data collection and other low-impact activities.

A permit would be required for any activity that included the construction of drill pads, roads, digging of sumps or using heavy equipment to create disturbance. A Notice of Intent (NOI) permit allows for up to 5 acres of disturbance and requires that a bond be paid to cover potential environmental liabilities associated with the proposed activity. NOI permits are typically issued for exploration drilling activities but are not sufficient for production.

If more than 5 acres of disturbance is planned a Plan of Operations (PoO) must be filed with the BLM, which requires an Environmental Assessment (EA) with an archeological assessment. This process is standard practice in Nevada, and there are standard rules that regulators and applicants follow through the submittal, review, and issuance of the permit. Depending upon the environmental and ecological sensitivity of the area, an Environmental Impact Statement (EIS) may also be required. To obtain a PoO, the process can take up to a few hours, but timing varies depending on the specific of the situation.

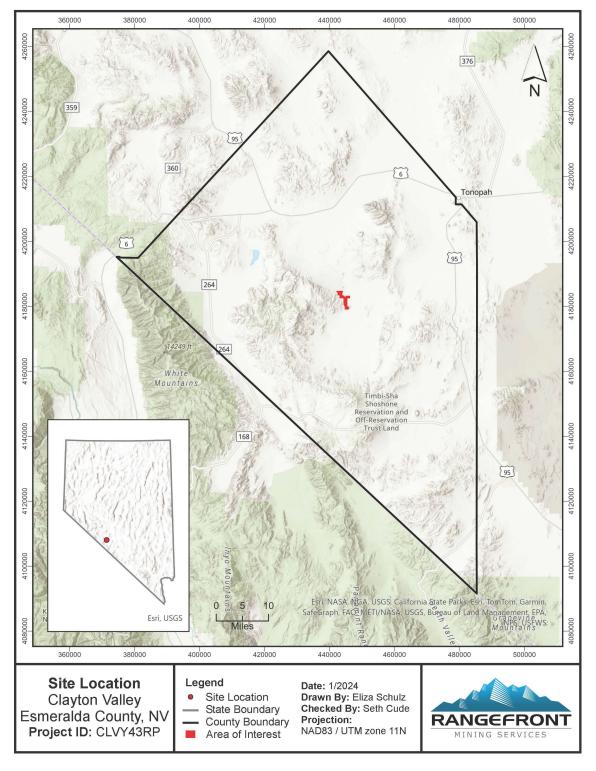


Figure 1. Clayton Valley Lithium Project location

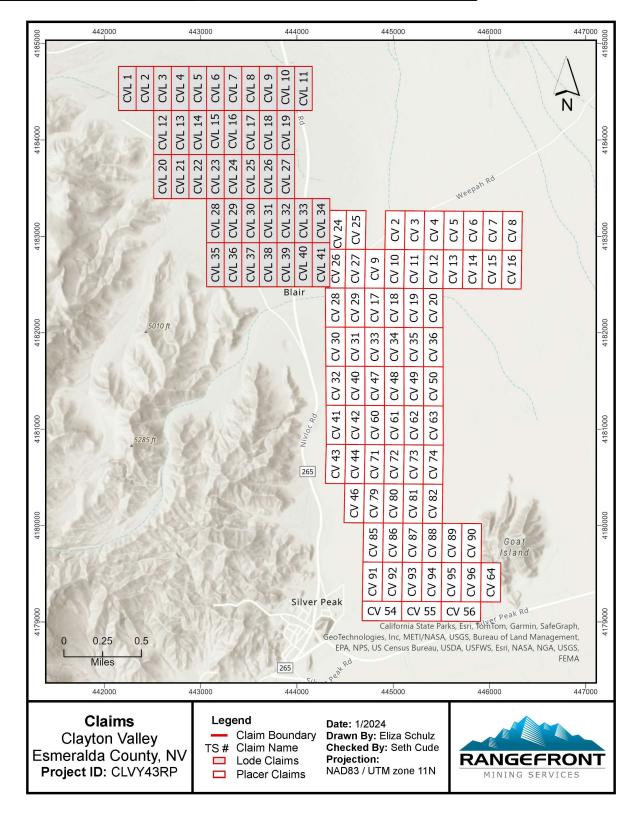


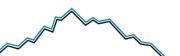
Figure 2. Clayton Valley Lithium Project Claims

5.5 Cultural and Environmental Liabilities

There are three abandoned drill sites from drilling in 2021. The BLM conducted a site visit in February 2024 and identified specific problems with one site, and no evidence of re-seeding on another. A third inspected site had no issues at all. Remediation of the worst site will consist of minor re-contouring and removal of debris. The other problem site requires the removal of invasive weeds and re-seeding. This will be completed before any new work will commence in 2024. No known existing cultural or additional environmental liabilities for the Project. A few abandoned drill sites of unknown origin have been identified at the Project, but these are the responsibility of the company that drilled them. The casing from at least one of the abandoned holes was removed, and the hole was plugged in March 2021.

5.6 Water Rights

Filing of mineral claims does not grant the claim holder water rights. All water rights are held by the state and specific agreements must be made to obtain and pump the water, regardless of its I suitability for agriculture or drinking. Water rights agreements inside the Project area were not researched as a part of this report.


5.7 Mineral Tenure

The Project is held with unpatented mining claims under provisions of the Federal Mining Act of 1872 as amended, and 100% of land ownership is held by the BLM. The Project is held with unpatented mining claims under provisions of the Federal Mining Act of 1872 as amended, and land ownership us held by the BLM. If claims filings are paid on time along with the associated documentation properly completed and submitted, the claims will not expire. These claims grant the exclusive right to explore and develop the claims to the holder, however it does not grant the holder an unregulated right to extract and sell the minerals. There are additional local, state, and federal regulatory approvals and permits required before extraction, processing, beneficiation, or sale of minerals from the Project can occur. The details, timelines and costs associated with meeting these requirements are not covered in this report.

6. ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, AND PHYSIOGRAPHY

6.1 Access to Property

The project is located on the northwest side of Clayton Valley, a dry playa lake in southwest Esmerelda County, Nevada. The project is about 48 air-line km (29 miles) southwest of Tonopah, Nevada, 273 air-line kilometers (170 miles) southeast of Reno, Nevada and about 282 air-line km (175 miles) northwest of Las Vegas, Nevada.

Access to the property is west from Tonopah via paved highway US 6 for 55 km (34 miles) then south on state route 256 for 33 km (20.5 miles) then on a graveled road for about 2 km (1.5 miles) to the property. Off-highway roads provide access to much of the property, and overland travel is readily available as most of the property is on dry lakebed. However, travel across the Clayton Valley playa can be significantly hindered by precipitation.

Climate

Clayton valley is arid to semi-arid high-desert terrain in the rain shadow of the Sierra Nevada Mountains. The peak temperature occurs in July with an average of 37°C (98°F). The average peak wintertime temperatures range from a high of 7.7 °C (46°F) to a low of -8.1°C (17°F). Precipitation for Silver Peak averages 4.38 inches (111 mm) per year with most falling in late spring. Typically, Clayton Valley experiences long dry periods punctuated by severe thunderstorms from March to October. The calculated evapotranspiration potential for shallow open water in Clayton Valley is 1740 mm (5.7 feet) per year for a net deficit of 1615 mm (5.3 ft.) per year (State of Nevada Water Resources).

6.2 Physiography

The project area is located at an elevation of about 1300 meters (4270 feet) in the western Basin and Range province. The property terrain is generally flat and consists of playa, sand dunes, and alluvial fans dissected by dry stream channels. Elevations range from 1300 m (4270 feet) on the playa floor to about 1406 meters (4613 feet) on the upper reaches of the claim block. The ranges around the basin reach up to about 2280 meters (7481 feet) with the pass leading out of Clayton Valley on the east side at 1561 meters (5122 feet) Vegetation is minimal consisting primarily of low growing desert shrubs with small forbs between them. The dominant plant on the alluvium is a variety of shad scale. Some small pinyon – juniper trees are found on the upper slopes, and Joshua) are found on the mid-slopes.

6.3 Local Resources and Infrastructure

. The unincorporated town of Silver Peak permanently houses year-round residents and itinerant workers who are employed at Scorpio Gold Corporation Mineral Ridge Mine or the Albemarle Lithium Brine operation. The 2023 Census indicates a population of Silver Peak at 213 and declining at -1.39%. Housing is mostly in trailer parks, RV, parks, and a small number of constructed frame houses. Cellular telephone service is available in the valley and surrounding hills.

Emergency services and one restaurant are present in Silver Peak. Tonopah offers food, lodging, fuel, and earthwork/reclamation services. Other local supply centers include Hawthorne (145 road km, 90 miles) or Bishop, California (164 road km, 102 miles). All mineral exploration

services including supplies, analytical laboratories, and drilling service companies are available in Reno (362 road km, 225 miles) and Elko (533 road km, 331 miles).

Airports with commercial service are available in Reno, and Las Vegas (355 road km, 220 miles) Seasonal commercial service is present at Mammoth Lakes, California (185 road km, 115 miles). Tonopah has an airport managed by Nye County and has two runways, but no commercial service. The nearest rail terminus is in Hawthorne, Nevada by Union Pacific which services the military depot in Hawthorn. This terminus connects with the main rail hub in the Reno Sparks area.

Domestic water is supplied by the Silver Peak municipal water supply by three wells located approximately 1 km (.62 mi) southwest of town. Two of the wells only produce domestic water, while the third produces only haul-water as it exceeds the maximum contaminant level (La Rue and Anderson, 2021).

An electrical substation in Silver Peak forms an intertie between Nevada and California grids. One 55 kV line extends east to the Millers substation, the other 55kV line extends to Goldfields and Tonopah, and a third line extends west to California (Esmerelda County Website).

7. HISTORY

7.1 Regional Mining History References

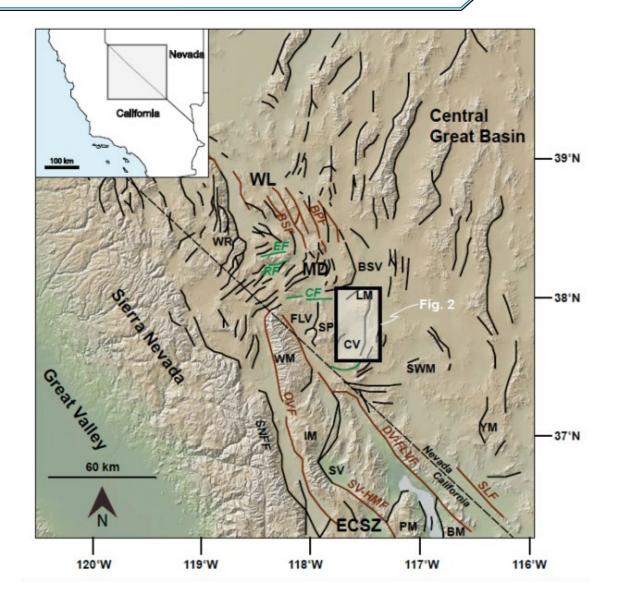
Hard rock exploration and mining in the Silver Peak-Mineral Ridge areas began in the 1840's and continues to the present. The mining of salt and borates from numerous dry lake beds and alkali springs in the region supplied the larger camps with salt for the vat leach mills and borax flux for the smelters. Clayton Valley salts were recognized in 1906, and lithium was recognized in the late 1950's by Leprechaun Mining. Leprechaun staked ground and commenced exploration in 1959 and then sold their interest to Foote Mineral Company in 1964. In 1967 Foote began producing brines and sold their interest in 1997 (Davis, et al. 1986). The current owner is Albemarle Corporation of North Carolina.

7.2 Property History

An early possible claimant of the current land position may have been Foote Minerals in 1967. Forty-acre land descriptions on two drill logs place the holes with the Claim boundary. It is not clear, however, if these were wildcat holes or if they were drilled on claims at the time.

Geothermal exploration across the region including the current land was conducted from 2005 to 2009 by Sierra Geothermal Power Corporation (SPG) from 2005 to 2009 (Hulen, 2008). SPG conducted geologic mapping, gravity, seismic surveys, and drilled ten holes in the area. According to a SPGC proposed location map, six holes occur on the property. Gradient and

down-hole geologic data are available for these holes, but surveyed coordinates of hole collars are not present. Also, there is no record if the cuttings being assayed.


Clayton Valley exploration is presently very active at present. Neighboring land positions are shown in Figure 3.

8. GEOLOGIC SETTING AND MINERALIZATION

8.1 Regional Geologic Setting

Clayton Valley is on the south boundary of the Walker Lane, a seismically active and complex tectonic zone within the dominant extensional terrain of the Great Basin Province. The interplay of the two structural regimes has produced complex geology around Clayton Valley. The Valley is part of the Silver Peak-Lone Mountain extensional complex which is composed of widespread metamorphic core complexes that formed in an extensional structural stepover that links right-lateral strike slip faults of the Furnace Creek fault system with the central Nevada Walker Lane fault network (Oldow et al., 2009). This region is seismically and geothermally very active at present. Figure 3 shows the location of Clayton Valley with respect to the stepover termed the Mina Deflection. North-South extension that produced the metamorphic complex at Silver Peak is interpreted to have caused the Walker Lane stepover (Oldow et al. 2009)

The ranges around Clayton Valley are composed of metamorphosed early Paleozoic to late Precambrian sediments on the west at Mineral Ridge and mid-Paleozoic sediments on the east. Local granitic intrusions are common in both ranges. Tertiary volcanic rocks dominate the Clayton Valley region, some of which may have produced lithium-rich tuff (Coolbaugh et al. 2018). Miocene eruptions from two centers include Montezuma Peak (17 ma) and Silver Peak (4.8-6 ma) (Coffee, et al. 2021). Felsic eruptions from the Long Valley Caldera (7.4 Ka) produced 6.3 cubic kilometers (1.5 cubic miles) of ash. A basalt cones in the north Clayton Valley is 3.9 Ka (Dohrenwend, 1990). Clayton Valley is a fault-bounded closed basin. The bounding faults strike mostly in the northeast and are mostly down to the northwest. Basin-fill strata are asymmetrically thicker to the east and thinner to the west. Sedimentary rocks exposed in the Silver Peak Range, the Weepah Hills, and the lowlands east of the basin comprise the lithium bearing Esmeralda Formation deposited ~12–10 Ma (Burrus, 2013; Davis & Vine, 1979; Turner, 1900). The Esmerelda Formation is composed of lacustrine, fluvio-lacustrine, and tuffaceous horizons. (Coffey et al., 2021). Figure 4 (after Stockli, 2015) shows the relationship of Basin and Range normal faults with strike slip faults of the Walker Lane.

Figure 3. Tectonic overview of the Walker Lane and Eastern California Shear Zone in west-central Nevada and eastern California; BM-Bare Mt.; BPF Bettles Well-Petrified Springs fault; BSF-Benton Springs fault; BSV-Big Smokey Valley; CF-Coaldale fault; CGB-Central Great Basin; CV-Clayton Valley; DV-FLVF-Death Valley-Fish Lake Valley fault; ECSZ-eastern California shear zone; EF- Excelsior Mts. fault; FLV-Fish Lake Valley; LM-Lone Mt.; IM-Inyo Mts.; MD Mina Deflection; OVF-Owens Valley fault; PM-Panamint Mts.; RF-Rattlesnake Flat fault; SLF-Stateline fault; SNB-Sierra Nevada batholith; SNFF-Sierra Nevada Frontal fault; SP-Silver Peak Range; SVHMF-Saline Valley-Hunter Mt. fault; SV-Saline Valley; SWM-Stonewall Mt.; WL-Walker Lane structural belt; WM-White Mts.; WR-Wassuk Range; YM-Yucca M , (after Stockli, 2015)

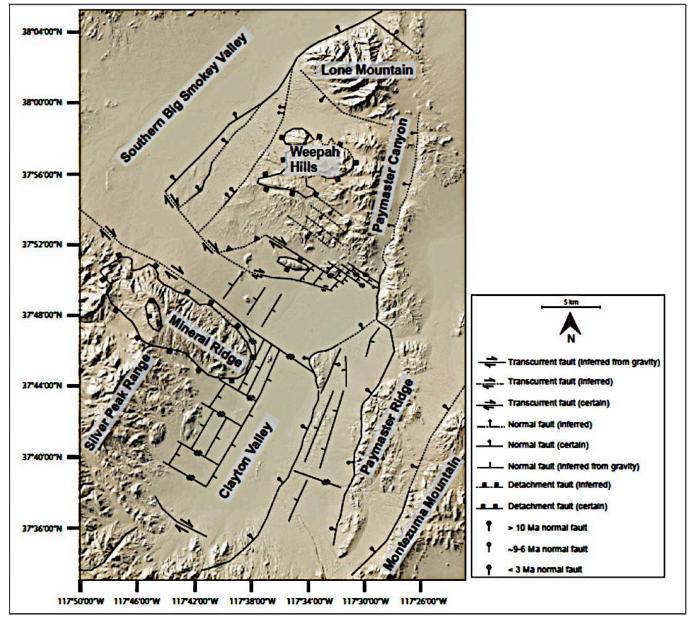



Figure 4. Summary of faults in the Clayton Valley region (after Stockli, 2015)

The Project is located on the west-central part of the Clayton Valley playa. The western edge of the claim group abuts Pre-Cambrian to Ordovician meta-sedimentary, and Cretaceous granitoid intrusive bodies that are in the Mineral Ridge detachment footwall. Normal faults from the boundary between the basement rocks and the valley-fill sediments. In the southwest corner of the claims is an elongated body of travertine and tufa that formed from basin fluids that reached the surface (Hulen, 2008). Normal faults inferred from geophysics project to the northeast across the claims and form the margins of the Goat Island Graben. Interestingly, one of these faults projects near a hole drilled in 2021 that contained lithium mineralization.

Playa exposure consists of very fine lakebed clays and wind-blown sand. Outcrops of iron rich travertine and algal mound tufa are found around the springs to the west of the property. Due to the very early exploration stage of this property, NVEM has not conducted any new geologic mapping on the property. The main geologic reference is mapping published by Hulen, 2008. The published maps are on a 1:30,000 scale compilation of more detailed 1:10,000 work. This mapping was directed at picking up the surface details of the geothermal system (travertine, perched lake beds, faulting) to guide exploration for geothermal power. Figure 5 illustrates details of mapped geology by Hulen (2008) and the Grid land position.

8.2.1 Stratigraphy and Lithologic Descriptions

The principal lithologic units within the Grid Metals Project claims include:

Quaternary Alluvium: recent soils, dunes, alluvial fans

Detachment Lower Plate Rocks:

- Granitoids- Cretaceous variably coarsely crystalline plugs and dikes
- Wyman Formation-Proterozoic phyllite schist and marble.
- Reed Dolomite-Cambrian dolomite marble (encountered in RSV-03)

8.2.2 Structural Geology

Mineral ridge likely represents a northwest oriented anticline. Detachment faults occur near the base of Mineral Ridge, but the entire Mineral Ridge section is cut by normal faults at the valley margin. Northeast oriented normal faults that appear to form a graben project to the northeast (Figure 6).

NI 43101 Technical Report Clayton Valley Lithium Project, Esmeralda Co., NV

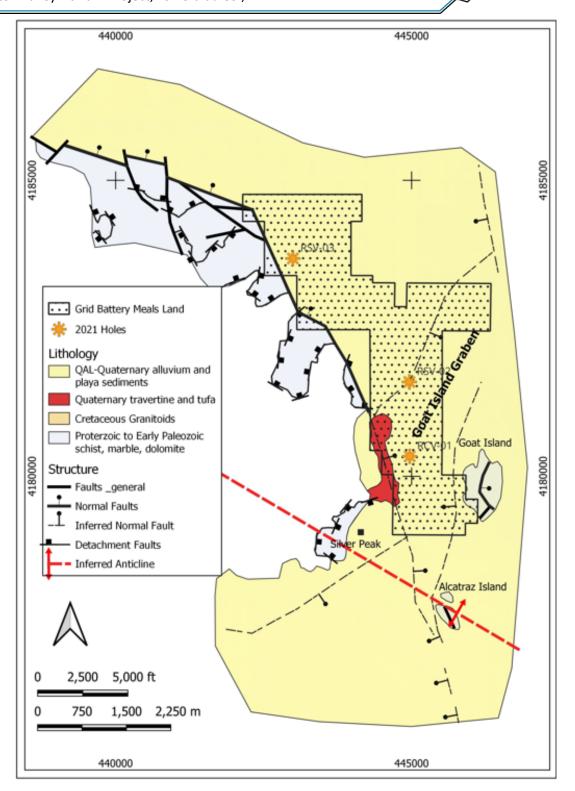
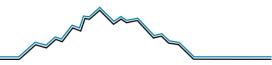



Figure 5. Simplified geology of the Project area (after Huen, 2008)

8.2.3 Alteration

Travertine and siliceous tufa are the only documented examples of surface alteration on the Property (Figure 5) from Hulen (2008).

8.3 Mineralization

8.3.1 Location of Mineralization

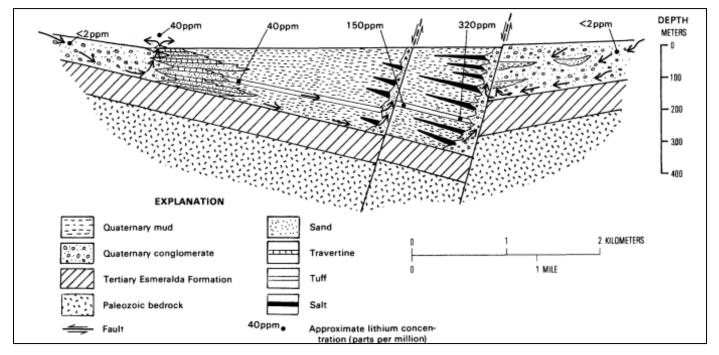
Drill hole SV-01 encountered moderate grade mineralization from 0-20 feet (0-6.7 m).

9. DEPOSIT TYPE

The primary lithium bearing tuff and tuffaceous sediment on the surface on the east side of the Clayton Valley is the Esmeralda Formation. In the northwest portion of the claims, clay hosted mineralization may occur above the valley floor that is covered by alluvium.

. The United States Geological Survey publishes deposit models for various mineral deposit types. These are mostly used to guide research efforts but are also useful in standardizing nomenclature in the exploration community. In Open File Report 2013-1006 seven characteristics of Lithium Brine deposits are laid out (Bradley et al. 2013). Clayton Valley has all the published ingredients for lithium concentrations in the surface and shallow subsurface

The characteristics are:


- Arid Climate
- Closed basin containing a playa or salar
- Tectonically driven subsidence
- Associated igneous or geothermal activity
- Suitable lithium source rocks
- One or more adequate aquifers
- Sufficient time to concentrate lithium into a brine.

Clayton Valley lithium deposits at the surface and lithium brine concentrations in the subsurface. Surface clay deposits are likely formed by reaction of volcanic tuff and lake sediments with lithium bearing fluids that may be recoverable using traditional open cast mining methods.

In contrast, subsurface brine concentrations occur within consolidated and poorly consolidated gravel, clay, and tuffaceous material. Brines pumped from wells would use recovery process not involving evaporation ponds. The metal source(s) are likely lithium rich tuffs that underwent

alteration (devitrification) the liberated the lithium via warm groundwater. There is a strong correlation between geothermal activity and lithium in the western Nevada basins. Geothermal waters are often enriched in lithium in this area. However, it is not clear if the lithium is sourced in the deeper parts of the systems or if meteoric water has leached lithium from near-surface volcanics and carried into the deep circulating systems (Coffee et al. 2021, Davis et al. 1986). Lithium can also be leached by an active geothermal system (Klein, 2006).

At Albemarle lithium operation, several different stratigraphic horizons produce lithium brines. These form distinct geologic units and can be correlated from hole to hole in different parts of the basin. One of the most prolific is the "Main Ash Aquifer" which correlates with the Bishop Tuff (Zampirro, 2004). Figure 6 is an idealized cross-section Clayton Valley illustrates where concentrations of lithium occur.

Figure 6. Idealized cross-section of Clayton Valley showing where lithium should concentrate (Davis, Friedman, and Gleason, 1986).

10. EXPLORATION

10.1 Surface Exploration

Surface exploration by Nevada Energy Metals between 2015 and 2021 consisted of claim-restaking and reconnaissance sampling. In 2021, drilling was conducted by Nickel Rock Resources. Since 2021, there has been no exploration on the Project by Grid.

10.2 Geophysical Exploration

Sierra Geothermal Power Corporation (SGPC) conducted extensive geophysical work in Clayton Valley as part of their geothermal energy exploration. The work included magnetotelluric, magnetic, gravity, and seismic surveys of the northwest part of Clayton Valley. These surveys cover the current property position.

Results of the SGPC geophysical survey identified what they called the Goat Island Graben, a sub-basin within Clayton Valley between Goat Island and the eastern side of the Silver Peak Range. The graben was an attractive target for geothermal drilling as the bounding structures are likely conduits for hot water. Recognition of the sub-basin in the gravity survey led to staking of the claims that make up the Clayton Valley Lithium Project.

Magnetotelluric geophysics determines effective resistivity of the underlying rocks by recording voltage and phase shifts in naturally occurring electromagnetic signals. The data mostly shows the outcrop of Paleozoic rocks in Goat Island as a relative resistor compared to the surrounding water filled sediments. Two- and three-dimensional modeling of the MT shows a roughly soupplate shaped conductor between Goat Island and the Silver Peak Range. Basin depths range from 500 to 750 meters below the ground surface. The spacing of the stations is not tight enough to define the bounding faults. Brine filled sediments are very conductive and can mask deeper features in electrical geophysical methods. Natural source MT used in this survey is somewhat less subject to this effect than controlled source methods where a current is introduced to the earth.

Two seismic lines cross the property. The results show a saucer shaped graben with a depth of about 700 meters. Reflective – refractive layers within the basin dip towards the center of the graben with the deeper members showing steeper dips than the shallow. This is indicative of a basin that was sinking as it was filling, rotating the beds along the bounding faults and filling in with flatter beds. The depth of the basin as determined by the seismic lines is in general agreement with the depths calculated from the MT work.

A ground magnetic survey was conducted over the geothermal lease area in September of 2009. Data was collected at 2 second intervals, roughly equivalent to 2-3 meters at walking speed, with the location automatically recorded using a differential GPS. Results were calibrated using a fixed base station to record background shifts and to remove any variation between the

different recording units. Data was not collected over the steep terrain of Goat Island resulting in a hole in the gridded results over the outcrop area. The magnetic data shows a northeast – southwest trending magnetic low to the west of Goat Island, roughly conforming to the Goat Island Graben. This is likely the result of low magnetic susceptibility material filling the graben although sulfidation or propylitic alteration might play a role.

A few radiometric readings are recorded in the SGPC data set; the exact source is unknown, and the survey was not systematic. The results hint at a radioactive component to the hot-spring deposits on the western side of the valley.

The gravity survey best defines the Goat Island Graben, especially the calculated horizontal gradient component which identifies where the values are changing fastest in the spatial sense, primarily identifying faults in this case. Over 1500 gravity stations were placed in the larger project area as part of the SGPC study. Station spacings around and between the clusters are Approximately 140 stations occur within the Project claim block with 250 m spacing (Figure 7) shows the locations of the gravity stations within the Project area. Residual gravity is shown in Figure 8 with the same faults posted on the geologic map in Figure 5. Horizontal gradient gravity in Figure 9 illustrates the strong changes in density gradients attributable to faults. Figure 10 shows total magnetism reduced to pole.

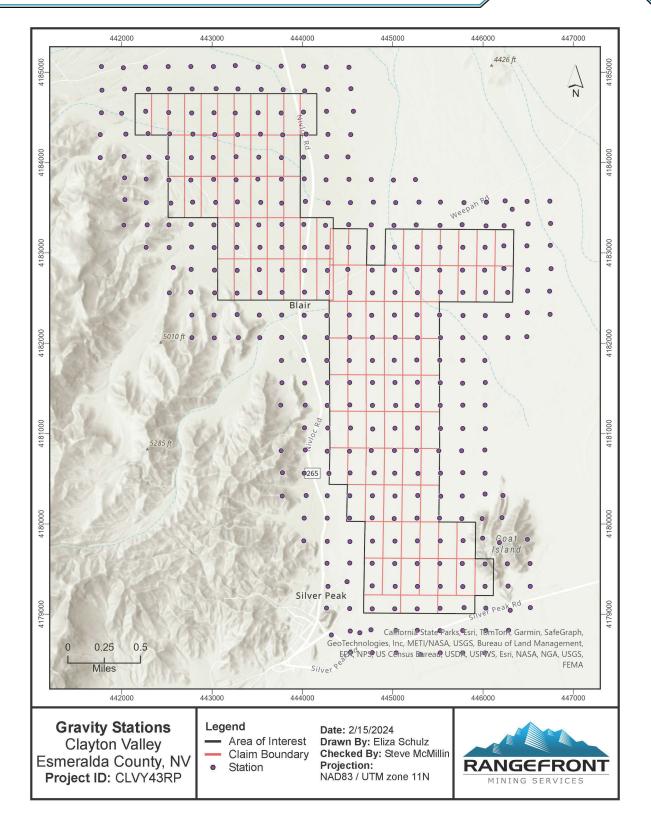


Figure 7. 2007 Geothermal survey gravity stations

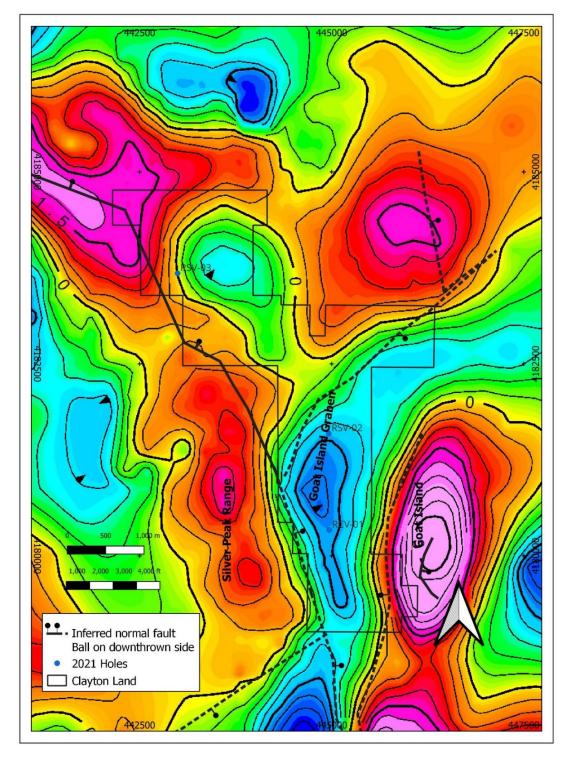


Figure 8. Project residual gravity contours and faults (SPC data set, Hulen 2008)

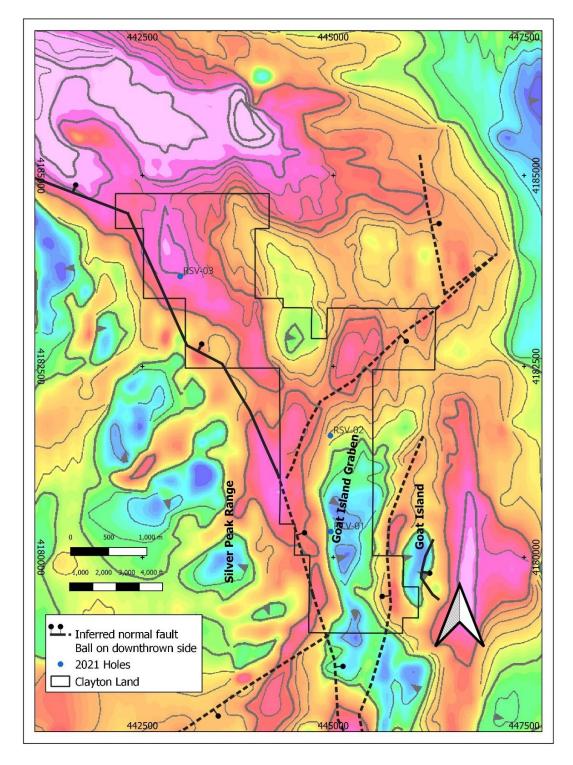


Figure 9. Project horizontal-gradient gravity contours and faults (SPC data set, Hulen 2008).

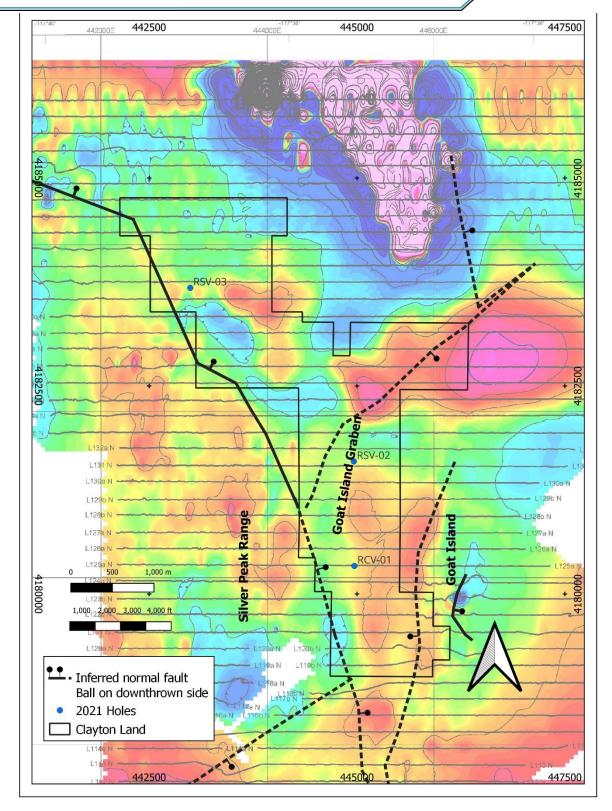


Figure 10. Project Reduced to pole magnetic contours and faults (SPC data set, Hulen 2008)

11. DRILLING

The locations are shown in Figure 11. Nickel Rock Resources drilled three holes totaling 356 m (1,155 ft) in March 2021. Two holes were drilled in the Clayton playa (RSV-01, RSV-02) testing for brine mineralization, and a third hole RSV-03 was drilled in the lode claims to the northwest. This hole was intended to test for clay-hosted lithium but ended upon encountering dolomite at 56 m (425 feet). The locations are shown in Figure 11. The samples in RSV-03 were not assayed. Results are shown in Table 1 for RSV-01 and RSV-02 as follows:

	From				
Hole	(M)	To (M)	From (F)	To (F)	Li ppm
RSV-01	0.0	6.1	0	20	309.3
RSV-02	0.0	57.9	0	190	172.1
including	0.0	9.1	0	30	221.2
	18.3	25.9	60	85	279.2
	30.5	36.6	100	120	210.5
	45.7	48.8	150	160	209.5
and	135.6	137.2	445	450	576

Table 1: Results of Nickel Rock 2021 drilling

Western Geothermal Partners drilled at least one and possibly six drill holes across the claim group in 2006 on what is now the Clayton Valley Lithium project. The bottom hole temperature was 50°C (122°F) which showed moderate potential for geothermal power. The location of the geothermal drill holes on the Grid Property are shown in Figure 12. Lithology thermal data are available, but there is no evidence that samples were assayed

More of interest for this report, the well encountered a 25-foot-thick zone of volcanic ash reportedly like the Main Ash Aquifer in the Clayton Valley lithium operation. The presence of any felsic ash in this hole is significant since it is the presumed source for at least some of the lithium in the brines (Price et al., 2000).

From	То	From	То		
m	m	Ft	ft.		
0	3	0	10	Travertine – calcareous tufa	
3	6	10	20	Siliceous sinter	
6	24.3	20	80	Lost circulation – presumed hot springs apron	
24.3	43.5	80	143	Dolomitic travertine, interbeds of green silt and sand	
43.5	56.4	143	185	Green clay, silt, fine sand, clasts of coarse sinter	
56.4	85.3	185	280	Dolomitic travertine and siliceous sinter, interbeds green clay and silt. MnOx	
				stained bands	
85.3	93	280	305	Fine grained green tuff(?), possible "Main Ash Aquifer" or similar rock	
93	123	305	405	Fine to medium grained sand +/- volcanic ash, angular gravel ranges from 20 to	
				70% of the sample. Quartz vein fragments 305 - 355	

Table 2. Summary lithology from geothermal gradient well on Grid

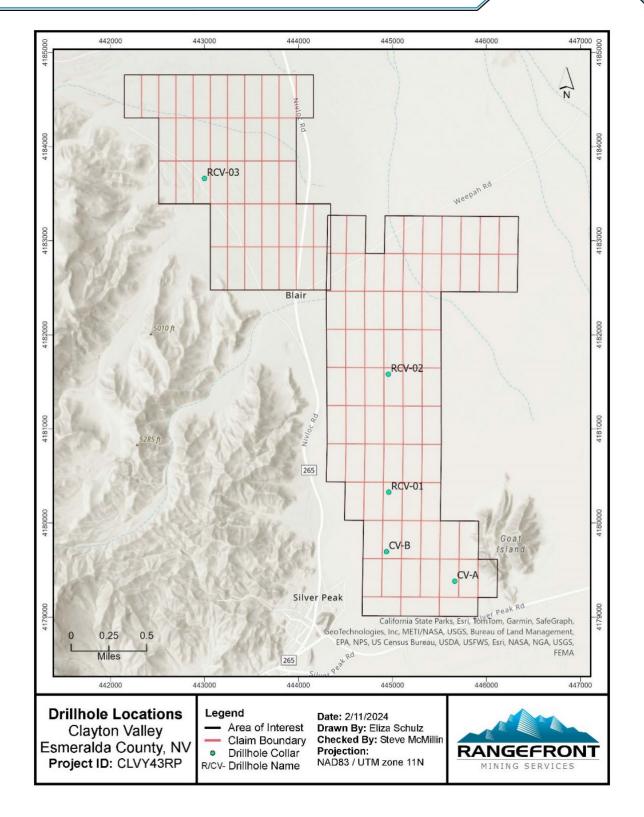
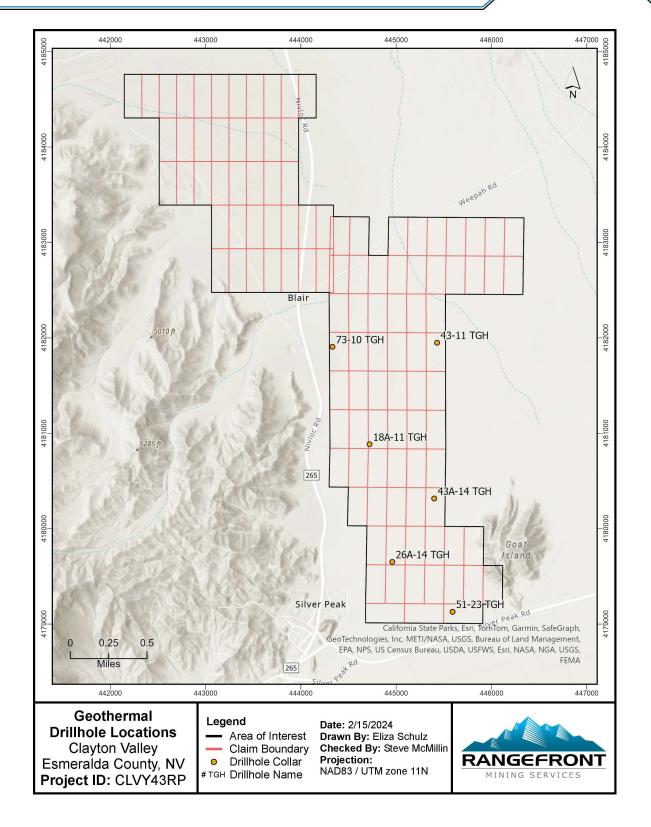
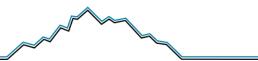




Figure 11. 2021 Project drill holes (RCV-series)

Figure 12. 2007 Geothermal gradient hole locations (no surveyed collars) within Project boundaries (SPC data set).

12. SAMPLE PREPARATION, ANALYSES, AND SECURITY

Chip samples from the 2021 drill program were collected from the drill sites and stored at the "field office" tent camp. On completion of the drilling, samples were collected by the project geologist and delivered to the lab.

Samples were prepared and analyzed by Paragon Geochemical of Sparks, Nevada. Samples were dried and initially crushed to 70% passing a 10 mesh (2 mm) screen, a 250-gram aliquot was taken and pulverized in a ring mill to 85% passing a 200 mesh (.074) screen. Samples were analyzed with an aqua regia leach of a 0.5 g aliquot followed by Inductively Coupled Plasma Mass Spectrometry (ICP- MS). The detection level for lithium is 0.5 ppm using this method.

Envelopes of standard material obtained from Minerals Exploration Geochemistry were inserted into the sample stream at roughly 30.5-meter (100 foot) intervals. The eight standard samples returned lithium values ranging from 482 to 599 ppm Li with an average of 557 ppm Li.2

Water samples were collected by the project geologist and delivered to the ALS Global sample preparation lab in Elko, Nevada on April 5. Samples were filtered and analyzed by a combination of ICP-MS and ICP-OES methods by ALS Global. Standards were not inserted into the sample stream. A sample of drill make-up water taken from the Silver Peak municipal well was used as a background sample; it ran 70 micro grams per liter (70 ppb).

13. DATA VERIFICATION

All data used in this preparation of this report is derived from published reports, except those proprietary data collected by Nickel Rock Resources and presented herein. These reports are authored by reputable agencies or academics and are assumed to be factually accurate. The information contained within these sources was considered accurate and presumed to have been verified by the authors, and attribution was given when citing information from these sources.

All exploration data presented within the Project was collected by the geologist overseeing drilling for Nickel Rock Resources. Original laboratory assay certificates have been reviewed in the preparation of this report and are considered accurate based upon review of their QA/QC protocols.

14. MINERAL PROCESSING AND METALLURGICAL TESTING

No mineral processing or metallurgical testing has been conducted. This section is not applicable to this report.

15. MINERAL RESOURCE AND RESERVE ESTIMATES

No Resource or Reserve estimates have been conducted for the Project. This section is not applicable to this report.

16. MINING AND RECOVERY METHODS

Potential extraction, recovery or mining methods are not considered in this report. This section is not applicable to this report.

17. PROJECT INFRASTRUCTURE

This is a grassroots exploration project adjacent to a paved state highway and small village. Two power lines (120 KV) converge in Silver Peak from the north and east, and a 55 KV line extends from Silver Peak to the west. Power is available on the property via the northerly line built to serve the adjacent town and lithium brine operation. It is very likely the powerline has sufficient capacity to carry the additional load of another operation in the valley.

18. MARKET STUDIES

As of 2022, the lithium industry was valued at US 9.3 billion dollars with a compounded annual growth of 14.8%. A forecast from 2023-2031 shows the market reaching US 32.2 billion dollars. Energy storage solutions are the largest drivers of the global market. (Transparency Market Research, 2024)

19. Water Rights

Water rights to the brines may pose some problems to the project, depending on the ownership of the sub-surface water in the Clayton Valley basin. The mineral rights to lithium and other metals in brines under the BLM-managed lands are the property of the federal government. However, the water belongs to the State of Nevada and valid water rights are required to pump any significant quantities of water from the basin.

20. ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACTS

There is no record of conducted environmental studies on the Grid property other than a 2024 BLM site inspection related to the expired NOI bond that is in place. No significant environmental or permitting issues are foreseen on this property during upcoming exploration phases.

21. CAPITAL AND OPERATING COSTS

Capital and operating costs are not considered in this report. This section is not applicable.

22. ECONOMIC ANALYSIS

An economic analysis has not been completed as part of this report. This section is not applicable.

23. ADJACENT PROPERTIES

The Albemarle Corporation lithium brine "mining" operation is about 3 km to the east of the Clayton Valley Lithium Project. This project has been in continuous production since 1967. Exact production figures from the property are not known, mostly due to confidentiality protections given to single-source producers by the USGS and other reporting bodies. An estimate in Price et al. (2000) for production from 1967 to 1991 is 25,600 metric tons of Li metal. Production in 1997 (Garret, 2004) was about 5,700 metric tons of LiCO3 (1,072 tonnes Li metal). Production of 870 tonnes of Li metal equivalent in 2013 was reported by Rockwood Lithium in their annual report for 2013.

Pure Energy Minerals Ltd. reports resources of 817,000 tonnes of Lithium carbonate equivalent on their property located about 5 miles southeast of the Clayton Valley Lithium Project (Spanjers, 2015).

24. OTHER RELEVANT DATA AND INFORMATION

There is no known data relevant to the Project that has been omitted from this report.

25. CONCLUSIONS AND RECOMMENDATIONS

The portion of the Goat Island Graben that is covered by Grid Claims is inadequately tested by the 2021 drilling. The placement of hole RCV-03 was placed too close to the range front to completely test the section for clay mineralization. With respect to the brine targets, the two playa holes, RSV-01 and RSV-02 were placed near the axis of the Goat Island Graben, but similarly did not test a complete enough section. The long intervals of mineralization in SCV-02 suggest the hole was placed close to a concentration of mineralized brine indicating more follow-up work is required to better place future drill holes.

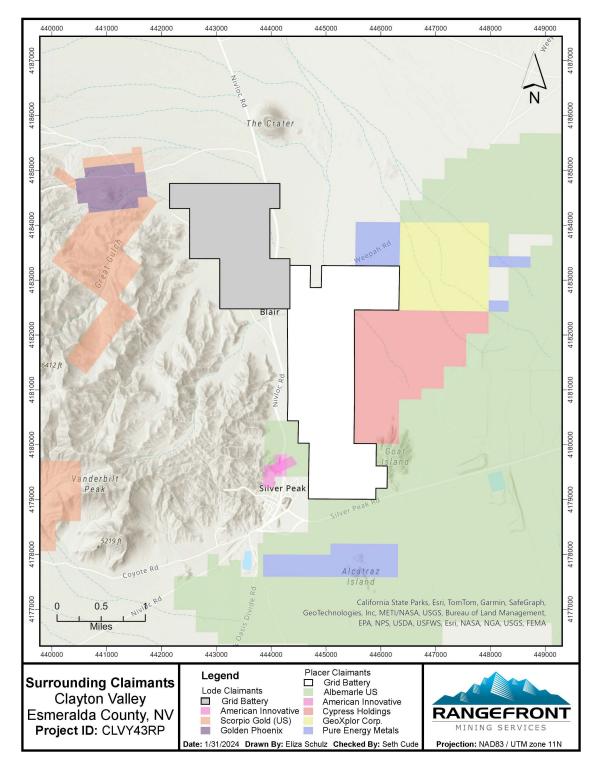
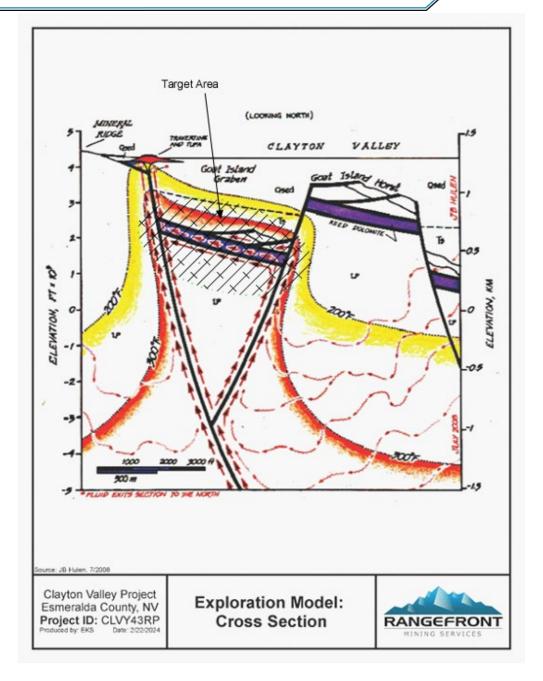



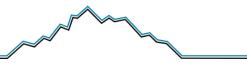
Figure 13. Project area and adjacent claimants

Figure 14 illustrates the exploration model for the Grid property. The primary target should be the Goat Island Graben. Soil samples should be collected on a 250 m grid as first pass followed by a CSAMT program to better define areas of fluid conductivity. Drill targeting needs to be refined with surface geochemistry and CSAMT results. A drilling method that best prevents lithium loss needs to be used. Drill holes in the Goat Island Graben should include an offset RCV-02. The secondary target is in the lode claims with hole placement further to the northeast away from the range front. A proposed exploration program budget for 2024 is shown in Table 3.

			Cost
Program	ltem	Description	Estimate
Phase 1	Labor	Crew chief, technician, GIS person	\$13,400.00
Grid Soil Sampling	Materials	tags, flagging, sample books, maps	\$400.00
250 x 250 m grid	Equipment	Truck and 2 ATV's	\$2,400.00
	Assays	Estimated 160 samples	\$7,200.00
		Total	\$23,400.00
		Contingency	\$25,700.00
			\$49,100.00
CSAMT Geophysics	Survey	Design, layout, and completion	\$78,000.00
21.5 Line-km	Labor	3d modeling and interpretation	\$10,000.00
		Total	\$88,000.00
		Contingency	\$25,700.00
		Total Phase 1	\$96,800.00
	Notice of		
Phase 2	Intent	New filing as current NOI is expired	\$5,000.00
Drilling	Dirt Work	New sites and reclamation of old and new	\$15,000.00
	Drilling	Four sites-1000 feet each, method TBD	\$320,000.00
	Labor	Logging, sampling, management	\$45,000.00
		3d modeling and interpretation	\$10,000.00
	Analytical +		
	QA/QC	Approximately 800 samples	\$40,000.00
		Total	\$435,000.00
		Contingency	\$43,500.00
		Total Phase 2	\$478,500.00
		Grand Total	\$575,300.00

Table 3. Budget for proposed 2024 Clayton Valley Lithium Project

Figure 14. Project exploration model. Small arrows depict downward percolation of meteoric water, and large arrows show the upward migration paths of heated water along faults and impermeable barriers. Travertine and tufa form when heated waters reach the surface (after Hulen, 2008).


26. REFERENCES

- Bradley, Dwight, Munk, LeaAnn, Jochens, Hillary, Hynek, Scott, and LaBay, Keith, 2013, A Preliminary Deposit Model for Lithium Brines, USGS Open File Report 2013-1006.
- Burrus, J. B. (2013). Structural and stratigraphic evolution of the Weepah Hills area, NV-transition from basin-and-range extension to Miocene core complex formation (M.S. thesis, p. 104). Austin, University of Texas. Retrieved from http: hdl.handle.net/2152/22226
- Coffee, D.M., Munk, L.A., Ibarra, D.E., Butler, K.L., Boutte, D.F., Jenckes, J., 2021, Lithium Storage and Release from Lacustrine Sediments: Implications for Lithium Enrichment and Sustainability in Continental Brines, American Geophysical Union Research Article 10.1029/2021GC009916, pp. 1-22
- Coolbaugh, Mark F., 2016, Preliminary Structural Model, Teels Marsh, Mineral County, Nevada; Report for Dajin Resources made available on their website <u>www.dajin.ca/teels-marsh/</u>
- Davis, Joseph R., Friedman, Irving, Gleason, J.D, 1986, Origin of the Lithium-Rich Brine, Clayton Valley, Nevada, U.S. Geological Survey Bulletin 162, pp. 132-138
- Davis, J.R., Vine, J.D., 1979, Stratigraphic and Tectonic Setting of the Lithium Brine Field, Clayton Valley, Nevada in Newman, G.W. and Goode, H.D., eds., Basin and Range Symposium: Rocky Mountain Association of Geologists and Utah Geological Association, pp. 421-430
- Dohrenwend, J.C, 1990, In: Wood C A, Kienle J (eds), 1990. *Volcanoes of North America*. Cambridge, England: Cambridge Univ Press, 354 p.
- Esmerelda County Website, 2024, About the Silver Peak Geothermal Power Project, Retrieved from <u>https://www.accessesmeralda.com/special_announcements.php</u>
- Hofstra, A. H., Todorov, T. I., Mercer, C. N., Adams, D. T., and Marsh, E. E., 2013, Silicate Melt Inclusion Evidence for Extreme Pre-eruptive Enrichment and Post-eruptive Depletion of Lithium in Silicic Volcanic Rocks of the Western United States: Implications for the Origin of Lithium-rich Brines: Economic Geology V108, pp. 1691-1701.
- Hulen, Jeffrey B., 2008, Geology and Conceptual Modeling of the Silver Peak Geothermal Prospect, Esmeralda County, Nevada, Technical Report for Sierra Geothermal Power Corporation, http://gdr.openei.org/files/268/Silver%20Peak%20Geology%20Map%20and%20Model% 20(Hulen)%20Jul%202008.pdf.
- Klein, Chris, 2006, GeothermEx Inc., Report for Sierra Geothermal Power Corporation. http://gdr.openei.org/submissions/268.
- La Rue, E, Anderson, M, 2021, Silver Peak Water System, Water Conservation Plan, Report to Silver Peak Water System, Gold Field Nevada.

Lithium Market Outlook-2031, 2024, Retrieved from: https://www.transparencymarketresearch.com/lithium-market.html

- Munk, LeeAnn, Hynek, Scott, Boutt, David, and Bradley, Dwight, 2015, Geology, Geochemistry, and Hydrology of Lithium Brines: in Penell, W.M. and Garside L.J., 2015, New concepts and discoveries, Geological Society of Nevada 2015 Symposium Volume pp. 515 - 519.
- Oldow, J. S., Kohler, G., Donelick, R. A., 1994, Late Cenozoic Extensional Transfer In the Walker Lane Strike Slip Belt, Nevada, Geology v. 22, pp. 637-640.
- Price, Jonathon G., Lechler, Paul J., Lear, Michael B., and Giles, Tim F., 2000, Possible Volcanic Sources of Lithium in Brines in Clayton Valley, Nevada, in Cluer, J.K., Price, J.G., Struhsacker, E.M., Hardyman, R.F., and Morris, C.L., Geology and Ore deposits 2000; The Great Basin and Beyond: Geological Society of Nevada 2000 Symposium Proceedings, pp. 241-248.
- Ross, Donald C., 1961, Geology and Mineral Deposits of Mineral County, Nevada; Nevada Bureau of Mines and Geology Bulletin 58.
- Spanjers, Raymond P., 2015, Inferred Resource Estimate for Lithium, Clayton Valley South Project, Clayton Valley, Esmeralda County, Nevada, 43-101 Technical Report for Pure Energy Minerals.
- Stockli, Daniel, 2015, Detachment Faulting and Geothermal Resources-An Innovative Integrated Geological and Geophysical Investigations of Pearl Hot Springs, Nevada, U.S. Department of Energy Final Report DE-EE0002960, pp. 1-20.
- Turner, H. W., 1900 The Esmerelda Formation: The American Geologist v. 25, pp. 168-170.
- Zampirro, D., 2004, Hydrology of Clayton Valley brine deposits, Esmeralda County, Nevada in Castor, S.B., Papke, K.G., and Meeuwig, R.O., eds., Betting on Industrial Minerals: Proceedings of the 39th forum on the Geology of Industrial Minerals, Reno-Sparks, Nevada, May 18-24; Nevada Bureau of Mines and Geology Special Publication 33, pp. 271 -280.

CERTIFICATES OF AUTHOR

I, Steven L. McMillin, MSc, PG., a Professional Geologist of Elko, Nevada USA, hereby certify that:

- 1. I am a Principal Geologist employed with Rangefront Mining Services having a business address at 1031 Railroad St. Ste. 102B, Elko, NV 89801.
- 2. I graduated with an MS in economic geology at the University of Alaska Fairbanks.
- 3. I have been registered with the American Institute of Professional Geologist since 2008 and I am in good standing (CPG-11031).
- 5. I have practiced as a geologist for over 30 years as an exploration geologist and mine geologist mostly in Nevada with lesser experience in Idaho, California, and Spain.
- 6. I have read the definition of "qualified person" set out in National Instrument 43-101 (NI 43-101) and 43-101F and certify that by reason of my education, affiliation with a professional association and past relevant work experience, I fulfill the requirement to be a "qualified person" for the purposes of NI 43-101.
- 7. I am responsible for the preparation of the technical report entitled "NI-43101 Technical Report Clayton Valley Lithium Project"
- 8. I have completed a site visit which included assessing access requirements and claim-post integrity.
- 9. I am independent of Grid Battery Metals, Inc. applying all tests in Section 1.4 of National Instrument 43-101.
- 10. I am not aware of any material excluded from this report that would make this report misleading.
- 11. I have read National Instrument 43-101 and Form 43-101F1 and the Technical Report has been prepared in compliance with that instrument and form.
- 12. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

Steven 1 MMilli

Dated this 4th day of March 2024

APPENDIX A

List of Clayton Valley Project Claims Grid Battery Metals, Inc. Appendix 1a – Claims List of Placer Claims for the Clayton Valley Lithium Project

Claim Name	Owner(s)	Location Date	BLM Ser. #	BLM Lead File #
CV 2	NEVADA ENERGY METALS USA INC	10/15/2020	NMC1210662	NMC1210661
CV 3	NEVADA ENERGY METALS USA INC	10/15/2020	NMC1210663	NMC1210661
CV 4	NEVADA ENERGY METALS USA INC	10/15/2020	NMC1210664	NMC1210661
CV 5	NEVADA ENERGY METALS USA INC	10/15/2020	NMC1210665	NMC1210661
CV 6	NEVADA ENERGY METALS USA INC	10/15/2020	NMC1210666	NMC1210661
CV 7	NEVADA ENERGY METALS USA INC	10/15/2020	NMC1210667	NMC1210661
CV 8	NEVADA ENERGY METALS USA INC	10/15/2020	NMC1210668	NMC1210661
CV 9	NEVADA ENERGY METALS USA INC	10/15/2020	NMC1210669	NMC1210661
CV 10	NEVADA ENERGY METALS USA INC	10/15/2020	NMC1210670	NMC1210661
CV 11	NEVADA ENERGY METALS USA INC	10/16/2020	NMC1210671	NMC1210661
CV 12	NEVADA ENERGY METALS USA INC	10/16/2020	NMC1210672	NMC1210661
CV 13	NEVADA ENERGY METALS USA INC	10/16/2020	NMC1210673	NMC1210661
CV 14	NEVADA ENERGY METALS USA INC	10/16/2020	NMC1210674	NMC1210661
CV 15	NEVADA ENERGY METALS USA INC	10/16/2020	NMC1210675	NMC1210661
CV 16	NEVADA ENERGY METALS USA INC	10/16/2020	NMC1210676	NMC1210661
CV 17	NEVADA ENERGY METALS USA INC	10/16/2020	NMC1210677	NMC1210661
CV 18	NEVADA ENERGY METALS USA INC	10/16/2020	NMC1210678	NMC1210661
CV 19	NEVADA ENERGY METALS USA INC	10/16/2020	NMC1210679	NMC1210661
CV 20	NEVADA ENERGY METALS USA INC	10/16/2020	NMC1210680	NMC1210661
CV 24	NEVADA ENERGY METALS USA INC	10/15/2020	NMC1210681	NMC1210661
CV 25	NEVADA ENERGY METALS USA INC	10/15/2020	NMC1210682	NMC1210661
CV 26	NEVADA ENERGY METALS USA INC	10/15/2020	NMC1210683	NMC1210661
CV 27	NEVADA ENERGY METALS USA INC	10/15/2020	NMC1210684	NMC1210661
CV 28	NEVADA ENERGY METALS USA INC	10/16/2020	NMC1210685	NMC1210661
CV 29	NEVADA ENERGY METALS USA INC	10/16/2020	NMC1210686	NMC1210661
CV 30	NEVADA ENERGY METALS USA INC	10/16/2020	NMC1210687	NMC1210661
CV 31	NEVADA ENERGY METALS USA INC	4/13/2016	NMC1122773	NMC1122746
CV 32	NEVADA ENERGY METALS USA INC	4/13/2016	NMC1122774	NMC1122746
CV 33	NEVADA ENERGY METALS USA INC	3/25/2016	NMC1122775	NMC1122746
CV 34	NEVADA ENERGY METALS USA INC	3/25/2016	NMC1122776	NMC1122746
CV 35	NEVADA ENERGY METALS USA INC	3/25/2016	NMC1122777	NMC1122746
CV 36	NEVADA ENERGY METALS USA INC	3/25/2016	NMC1122778	NMC1122746
CV 40	NEVADA ENERGY METALS USA INC	4/13/2016	NMC1122779	NMC1122746
CV 41	NEVADA ENERGY METALS USA INC	4/13/2016	NMC1122780	NMC1122746
CV 42	NEVADA ENERGY METALS USA INC	4/13/2016	NMC1122781	NMC1122746
CV 43	NEVADA ENERGY METALS USA INC	4/13/2016	NMC1122782	NMC1122746
CV 44	NEVADA ENERGY METALS USA INC	4/13/2016	NMC1122783	NMC1122746
CV 46	NEVADA ENERGY METALS USA INC	4/13/2016	NMC1122785	NMC1122746

Claim Name	Owner(s)	Location Date	BLM Ser. #	BLM Lead File #
CV 47	NEVADA ENERGY METALS USA INC	3/26/2016	NMC1122786	NMC1122746
CV 48	NEVADA ENERGY METALS USA INC	3/26/2016	NMC1122787	NMC1122746
CV 49	NEVADA ENERGY METALS USA INC	3/26/2016	NMC1122788	NMC1122746
CV 50	NEVADA ENERGY METALS USA INC	3/26/2016	NMC1122789	NMC1122746
CV 54	NEVADA ENERGY METALS USA INC	10/17/2020	NMC1210689	NMC1210661
CV 55	NEVADA ENERGY METALS USA INC	4/13/2016	NMC1122794	NMC1122746
CV 56	NEVADA ENERGY METALS USA INC	10/17/2020	NMC1210691	NMC1210661
CV 60	NEVADA ENERGY METALS USA INC	3/26/2016	NMC1122797	NMC1122746
CV 61	NEVADA ENERGY METALS USA INC	3/26/2016	NMC1122798	NMC1122746
CV 62	NEVADA ENERGY METALS USA INC	3/26/2016	NMC1122799	NMC1122746
CV 63	NEVADA ENERGY METALS USA INC	3/26/2016	NMC1122800	NMC1122746
CV 64	NEVADA ENERGY METALS USA INC	10/17/2020	NMC1210692	NMC1210661
CV 71	NEVADA ENERGY METALS USA INC	3/25/2016	NMC1122803	NMC1122746
CV 72	NEVADA ENERGY METALS USA INC	3/25/2016	NMC1122804	NMC1122746
CV 73	NEVADA ENERGY METALS USA INC	3/25/2016	NMC1122805	NMC1122746
CV 74	NEVADA ENERGY METALS USA INC	3/25/2016	NMC1122806	NMC1122746
CV 79	NEVADA ENERGY METALS USA INC	3/25/2016	NMC1122807	NMC1122746
CV 80	NEVADA ENERGY METALS USA INC	3/25/2016	NMC1122808	NMC1122746
CV 81	NEVADA ENERGY METALS USA INC	3/25/2016	NMC1122809	NMC1122746
CV 82	NEVADA ENERGY METALS USA INC	3/25/2016	NMC1122810	NMC1122746
CV 85	NEVADA ENERGY METALS USA INC	3/26/2016	NMC1122811	NMC1122746
CV 86	NEVADA ENERGY METALS USA INC	3/26/2016	NMC1122812	NMC1122746
CV 87	NEVADA ENERGY METALS USA INC	3/26/2016	NMC1122813	NMC1122746
CV 88	NEVADA ENERGY METALS USA INC	3/26/2016	NMC1122814	NMC1122746
CV 89	NEVADA ENERGY METALS USA INC	10/17/2020	NMC1210693	NMC1210661
CV 90	NEVADA ENERGY METALS USA INC	10/17/2020	NMC1210694	NMC1210661
CV 91	NEVADA ENERGY METALS USA INC	3/26/2016	NMC1122817	NMC1122746
CV 92	NEVADA ENERGY METALS USA INC	3/26/2016	NMC1122818	NMC1122746
CV 93	NEVADA ENERGY METALS USA INC	3/26/2016	NMC1122819	NMC1122746
CV 94	NEVADA ENERGY METALS USA INC	3/26/2016	NMC1122820	NMC1122746
CV 95	NEVADA ENERGY METALS USA INC	10/17/2020	NMC1210695	NMC1210661
CV 96	NEVADA ENERGY METALS USA INC	10/17/2020	NMC1210696	NMC1210661

Appendix 1b – Claims List of Lode Claims for the Clayton Valley Lithium Project

Claim Name	Owner(s)	Location Date	BLM Ser. #	BLM Lead File #
CVL 1	NEVADA ENERGY METALS USA INC	1/18/2021	NV105228745	NV105228745
CVL 2	NEVADA ENERGY METALS USA INC	1/18/2021	NV105228746	NV105228745
CVL 3	NEVADA ENERGY METALS USA INC	1/18/2021	NV105228747	NV105228745
CVL 4	NEVADA ENERGY METALS USA INC	1/18/2021	NV105228748	NV105228745
CVL 5	NEVADA ENERGY METALS USA INC	1/18/2021	NV105228749	NV105228745
CVL 6	NEVADA ENERGY METALS USA INC	1/18/2021	NV105228750	NV105228745
CVL 7	NEVADA ENERGY METALS USA INC	1/18/2021	NV105228751	NV105228745
CVL 8	NEVADA ENERGY METALS USA INC	1/18/2021	NV105228752	NV105228745
CVL 9	NEVADA ENERGY METALS USA INC	1/18/2021	NV105228753	NV105228745
CVL 10	NEVADA ENERGY METALS USA INC	1/18/2021	NV105228754	NV105228745
CVL 11	NEVADA ENERGY METALS USA INC	1/18/2021	NV105228755	NV105228745
CVL 12	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228756	NV105228745
CVL 13	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228757	NV105228745
CVL 14	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228758	NV105228745
CVL 15	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228759	NV105228745
CVL 16	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228760	NV105228745
CVL 17	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228761	NV105228745
CVL 18	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228762	NV105228745
CVL 19	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228763	NV105228745
CVL 20	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228764	NV105228745
CVL 21	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228765	NV105228745
CVL 22	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228766	NV105228745
CVL 23	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228767	NV105228745
CVL 24	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228768	NV105228745
CVL 25	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228769	NV105228745
CVL 26	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228770	NV105228745
CVL 27	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228771	NV105228745
CVL 28	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228772	NV105228745
CVL 29	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228773	NV105228745
CVL 30	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228774	NV105228745
CVL 31	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228775	NV105228745
CVL 32	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228776	NV105228745
CVL 33	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228777	NV105228745
CVL 34	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228778	NV105228745
CVL 35	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228779	NV105228745
CVL 36	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228780	NV105228745

	~
/	

_

Claim Name	Owner(s)	Location Date	BLM Ser. #	BLM Lead File #
CVL 37	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228781	NV105228745
CVL 38	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228782	NV105228745
CVL 39	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228783	NV105228745
CVL 40	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228784	NV105228745
CVL 41	NEVADA ENERGY METALS USA INC	1/19/2021	NV105228785	NV105228745

APPENDIX B

2021 Drill Results Clayton Valley Lithium Project Grid Battery Metals, Inc.

Appendix 2A – Clayton Valley Lithium Project 2021 Drill Results (Chip Samples)						
Hole ID	Sample_ID	From_M	To_M	From ft	To ft	Li_ppm
RCV-01	RCV-010-5	0.0	1.5	0	5	336
RCV-01	RCV-01 5-10	1.5	3.1	5	10	304
RCV-01	RCV-01 10-15	3.1	4.6	10	15	315
RCV-01	RCV-01 15-20	4.6	6.1	15	20	282
RCV-01	RCV-01 20-25	6.1	7.6	20	25	32
RCV-01	RCV-01 25-30	7.6	9.1	25	30	26
RCV-01	RCV-01 30-35	9.1	10.7	30	35	24
RCV-01	RCV-01 35-40	10.7	12.2	35	40	19
RCV-01	RCV-01 40-45	12.2	13.7	40	45	32
RCV-01	RCV-01 45-50	13.7	15.2	45	50	39
RCV-01	RCV-01 50-55	15.2	16.8	50	55	22
RCV-01	RCV-01 55-60	16.8	18.3	55	60	28
RCV-01	RCV-01 60-65	18.3	19.8	60	65	75
RCV-01	RCV-0165-70	19.8	21.3	65	70	64
RCV-01	RCV-01 70-75	21.3	22.9	70	75	23
RCV-01	RCV-01 75-80	22.9	24.4	75	80	33
RCV-01	RCV-01 80-85	24.4	25.9	80	85	22
RCV-01	RCV-01 85-90	25.9	27.4	85	90	24
RCV-01	RCV-01 90-95	27.4	29.0	90	95	22
RCV-01	RCV-01 95-100	29.0	30.5	95	100	13
RCV-01	RCV-01 100-105	30.5	32.0	100	105	26
RCV-01	RCV-01 105-110	32.0	33.5	105	110	21
RCV-01	RCV-01 110-115	33.5	35.1	110	115	21
RCV-01	RCV-01 115-120	35.1	36.6	115	120	28
RCV-01	RCV-01 120-125	36.6	38.1	120	125	26
RCV-01	RCV-01 125-130	38.1	39.6	125	130	34
RCV-01	RCV-01 130-135	39.6	41.2	130	135	16
RCV-01	RCV-01 135-140	41.2	42.7	135	140	15
RCV-01	RCV-01 140-145	42.7	44.2	140	145	33
RCV-01	RCV-01 145-150	44.2	45.7	145	150	64
RCV-01	RCV-01 150-155	45.7	47.2	150	155	40
RCV-01	RCV-01 155-160	47.2	48.8	155	160	23
RCV-01	RCV-01 160-165	48.8	50.3	160	165	60
RCV-01	RCV-01 165-170	50.3	51.8	165	170	48
RCV-01	RCV-01 170-175	51.8	53.3	170	175	92
RCV-01	RCV-01 175-180	53.3	54.9	175	180	46
RCV-01	RCV-01 180-185	54.9	56.4	180	185	43
RCV-01	RCV-01 185-190	56.4	57.9	185	190	22
RCV-01	RCV-01 190-195	57.9	59.4	190	195	15
RCV-01	RCV-01 195-200	59.4	61.0	195	200	22
RCV-01	RCV-01 200-205	61.0	62.5	200	205	38

NI 43-101 Technical Report Clayton Valley Lithium Project, Elko Co., NV

Hole ID	Sample_ID	From_M	To_M	From ft	To ft	Li_ppm
RCV-01	RCV-01 205-210	62.5	64.0	205	210	25
RCV-01	RCV-01 210-215	64.0	65.5	210	215	37
RCV-01	RCV-01 215-220	65.5	67.1	215	220	39
RCV-01	RCV-01 220-225	67.1	68.6	220	225	35
RCV-01	RCV-01 225-230	68.6	70.1	225	230	67
RCV-01	RCV-01 230-235	70.1	71.6	230	235	28
RCV-01	RCV-01 235-240	71.6	73.2	235	240	31
RCV-01	RCV-01 240-245	73.2	74.7	240	245	28
RCV-01	RCV-01 245-250	74.7	76.2	245	250	29
RCV-01	RCV-01 250-255	76.2	77.7	250	255	28
RCV-01	RCV-01 255-260	77.7	79.2	255	260	22
RCV-01	RCV-01 260-265	79.2	80.8	260	265	21
RCV-01	RCV-01 265-270	80.8	82.3	265	270	53
RCV-01	RCV-01 270-275	82.3	83.8	270	275	72
RCV-01	RCV-01 275-280	83.8	85.3	275	280	37
RCV-01	RCV-01 280-285	85.3	86.9	280	285	54
RCV-01	RCV-01 285-290	86.9	88.4	285	290	58
RCV-01	RCV-01 290-295	88.4	89.9	290	295	60
RCV-01	RCV-01 295-300	89.9	91.4	295	300	77
RCV-01	RCV-01 300-305	91.4	93.0	300	305	66
RCV-01	RCV-01 305-310	93.0	94.5	305	310	64
RCV-01	RCV-01 310-315	94.5	96.0	310	315	67
RCV-01	RCV-01 315-320	96.0	97.5	315	320	49
RCV-01	RCV-01 320-325	97.5	99.1	320	325	48
RCV-01	RCV-01 325-330	99.1	100.6	325	330	44
RCV-01	RCV-01 330-335	100.6	102.1	330	335	50
RCV-01	RCV-01 335-340	102.1	103.6	335	340	50
RCV-01	RCV-01 340-345	103.6	105.2	340	345	60
RCV-01	RCV-01 345-350	105.2	106.7	345	350	52
RCV-01	RCV-01 350-355	106.7	108.2	350	355	58
RCV-01	RCV-01 355-360	108.2	109.7	355	360	48
RCV-01	RCV-01 360-365	109.7	111.3	360	365	49
RCV-01	RCV-01 365-370	111.3	112.8	365	370	45
RCV-01	RCV-01 370-375	112.8	114.3	370	375	62
RCV-01	RCV-01 375-380	114.3	115.8	375	380	49
RCV-01	RCV-01 380-385	115.8	117.3	380	385	25
RCV-01	RCV-01 385-390	117.3	118.9	385	390	29
RCV-01	RCV-01 390-395	118.9	120.4	390	395	24
RCV-01	RCV-01 395-400	120.4	121.9	395	400	32
RCV-01	RCV-01 400-405	121.9	123.4	400	405	30

_	Γ	1				
Hole ID	Sample_ID	From_M	To_M	From ft	To ft	Li_ppm
RCV-01	RCV-01 405-410	123.4	125.0	405	410	25
RCV-01	RCV-01 410-415	125.0	126.5	410	415	26
RCV-01	RCV-01 415-420	126.5	128.0	415	420	22
RCV-01	RCV-01 420-425	128.0	129.5	420	425	24
RCV-02	RCV-02 0-5	0.0	1.5	0	5	261
RCV-02	RCV-02 5-10	1.5	3.1	5	10	210
RCV-02	RCV-02 10-15	3.1	4.6	10	15	149
RCV-02	RCV-02 15-20	4.6	6.1	15	20	199
RCV-02	RCV-02 20-25	6.1	7.6	20	25	281
RCV-02	RCV-02 25-30	7.6	9.1	25	30	227
RCV-02	RCV-02 30-35	9.1	10.7	30	35	113
RCV-02	RCV-02 35-40	10.7	12.2	35	40	89
RCV-02	RCV-02 40-45	12.2	13.7	40	45	139
RCV-02	RCV-02 45-50	13.7	15.2	45	50	209
RCV-02	RCV-02 50-55	15.2	16.8	50	55	153
RCV-02	RCV-02 55-60	16.8	18.3	55	60	98
RCV-02	RCV-02 60-65	18.3	19.8	60	65	332
RCV-02	RCV-02 65-70	19.8	21.3	65	70	285
RCV-02	RCV-02 70-75	21.3	22.9	70	75	263
RCV-02	RCV-02 75-80	22.9	24.4	75	80	234
RCV-02	RCV-02 80-85	24.4	25.9	80	85	282
RCV-02	RCV-02 85-90	25.9	27.4	85	90	137
RCV-02	RCV-02 90-95	27.4	29.0	90	95	129
RCV-02	RCV-02 95-100	29.0	30.5	95	100	74
RCV-02	RCV-02 100-105	30.5	32.0	100	105	287
RCV-02	RCV-02 105-110	32.0	33.5	105	110	81
RCV-02	RCV-02 110-115	33.5	35.1	110	115	272
RCV-02	RCV-02 115-120	35.1	36.6	115	120	202
RCV-02	RCV-02 120-125	36.6	38.1	120	125	174
RCV-02	RCV-02 125-130	38.1	39.6	125	130	113
RCV-02	RCV-02 130-135	39.6	41.2	130	135	145
RCV-02	RCV-02 135-140	41.2	42.7	135	140	121
RCV-02	RCV-02 140-145	42.7	44.2	140	145	118
RCV-02	RCV-02 145-150	44.2	45.7	145	150	75
RCV-02	RCV-02 150-155	45.7	47.2	150	155	202
RCV-02	RCV-02 155-160	47.2	48.8	155	160	217
RCV-02	RCV-02 160-165	48.8	50.3	160	165	114
RCV-02	RCV-02 165-170	50.3	51.8	165	170	134
RCV-02	RCV-02 170-175	51.8	53.3	170	175	97
RCV-02	RCV-02 175-180	53.3	54.9	175	180	70

 \searrow

-	Ι	1				· · · · · · · · · · · · · · · · · · ·
Hole ID	Sample_ID	From_M	To_M	From ft	To ft	Li_ppm
RCV-02	RCV-02 180-185	54.9	56.4	180	185	89
RCV-02	RCV-02 185-190	56.4	57.9	185	190	163
RCV-02	RCV-02 190-195	57.9	59.4	190	195	70
RCV-02	RCV-02 195-200	59.4	61.0	195	200	64
RCV-02	RCV-02 200-205	61.0	62.5	200	205	40
RCV-02	RCV-02 205-210	62.5	64.0	205	210	49
RCV-02	RCV-02 210-215	64.0	65.5	210	215	28
RCV-02	RCV-02 215-220	65.5	67.1	215	220	34
RCV-02	RCV-02 220-225	67.1	68.6	220	225	86
RCV-02	RCV-02 225-230	68.6	70.1	225	230	64
RCV-02	RCV-02 230-235	70.1	71.6	230	235	36
RCV-02	RCV-02 235-240	71.6	73.2	235	240	69
RCV-02	RCV-02 240-245	73.2	74.7	240	245	55
RCV-02	RCV-02 245-250	74.7	76.2	245	250	53
RCV-02	RCV-02 250-255	76.2	77.7	250	255	67
RCV-02	RCV-02 255-260	77.7	79.2	255	260	64
RCV-02	RCV-02 260-265	79.2	80.8	260	265	61
RCV-02	RCV-02 265-270	80.8	82.3	265	270	34
RCV-02	RCV-02 270-275	82.3	83.8	270	275	52
RCV-02	RCV-02 275-280	83.8	85.3	275	280	57
RCV-02	RCV-02 280-285	85.3	86.9	280	285	60
RCV-02	RCV-02 285-290	86.9	88.4	285	290	46
RCV-02	RCV-02 290-295	88.4	89.9	290	295	62
RCV-02	RCV-02 295-300	89.9	91.4	295	300	16
RCV-02	RCV-02 300-305	91.4	93.0	300	305	55
RCV-02	RCV-02 305-310	93.0	94.5	305	310	53
RCV-02	RCV-02 310-315	94.5	96.0	310	315	49
RCV-02	RCV-02 315-320	96.0	97.5	315	320	33
RCV-02	RCV-02 320-325	97.5	99.1	320	325	36
RCV-02	RCV-02 325-330	99.1	100.6	325	330	38
RCV-02	RCV-02 330-335	100.6	102.1	330	335	46
RCV-02	RCV-02 335-340	102.1	103.6	335	340	56
RCV-02	RCV-02 340-345	103.6	105.2	340	345	64
RCV-02	RCV-02 345-350	105.2	106.7	345	350	69
RCV-02	RCV-02 350-355	106.7	108.2	350	355	48
RCV-02	RCV-02 355-360	108.2	109.7	355	360	35
RCV-02	RCV-02 360-365	109.7	111.3	360	365	28
RCV-02	RCV-02 365-370	111.3	112.8	365	370	34
RCV-02	RCV-02 370-375	112.8	114.3	370	375	31
RCV-02	RCV-02 375-380	114.3	115.8	375	380	33

Hole ID	Sample_ID	From_M	To_M	From ft	To ft	Li_ppm
RCV-02	RCV-02 380-385	115.8	117.3	380	385	29
RCV-02	RCV-02 385-390	117.3	118.9	385	390	33
RCV-02	RCV-02 390-395	118.9	120.4	390	395	35
RCV-02	RCV-02 395-400	120.4	121.9	395	400	34
RCV-02	RCV-02 400-405	121.9	123.4	400	405	28
RCV-02	RCV-02 405-410	123.4	125.0	405	410	26
RCV-02	RCV-02 410-415	125.0	126.5	410	415	34
RCV-02	RCV-02 415-420	126.5	128.0	415	420	31
RCV-02	RCV-02 420-425	128.0	129.5	420	425	27
RCV-02	RCV-02 425-430	129.5	131.1	425	430	32
RCV-02	RCV-02 430-435	131.1	132.6	430	435	28
RCV-02	RCV-02 435-440	132.6	134.1	435	440	28
RCV-02	RCV-02 440-445	134.1	135.6	440	445	43
RCV-02	RCV-02 445-450	135.6	137.2	445	450	576

 \sim

Appendix 2B – Clayton Valley Lithium Project 2021 Drill Results (Water Samples)

Sample_ID	Li_mg/L
RCV-01 325	31.40
RCV-01 425	41.00
RCV-02 245	20.50
RCV-02 345	21.00
RCV-02 450	32.80